
Cooperative Vectors and

Neural Rendering

Shawn Hargreaves – Microsoft

Anis Benyoub – Intel

Joe Rozek – AMD

Alexey Panteleev – NVIDIA

Shader Programming Today

During development
Identify some interesting computation

Implement it in HLSL

Runtime
Implicitly data parallel programming model

Wide vector registers

Primarily float32 data types

Control flow, divergence…

A New Programming Model

During development
Get training data

Train a model

Runtime
Inference

= go find many examples of
inputs and desired outputs

= automated function
approximation

= matrix convolve

Why is this interesting?

Solve problems where we have example answers but don’t know an analytic solution

Replace expensive computations with cheaper automatically discovered

approximations (rendering is full of approximations and coherency)

Generalized function approximators can do more per watt
Divergence of data (weights) rather than code

Highly regular memory access patterns

Highly tolerant of quantization

Where might we apply this?

Expensive shader -> neural material

Large texture -> neural compression

Low resolution / aliased rendering -> neural upscaling or AA

Noisy raytracing -> neural denoiser

xxx -> yyy?

Models don’t have to solve 100% of the problem.
Train on the delta between a cheap conventional
rendering approximation vs. impractical high-
quality solution?

aka: ML fixes up artifacts from other techniques

Introducing: Cooperative Vectors

Cooperative Vectors

New HLSL language feature, part of shader model 6.9

Comes with Direct3D 12 API and PIX debugger support

Takes advantage of specialized vector/matrix acceleration hardware
Matrix/Vector Multiply
Matrix/Vector Multiply-Add
Vector/Vector Outer Product and Accumulate
Reduce and Accumulate

Matrix Formats
enum D3D12_LINEAR_ALGEBRA_DATATYPE

{

FLOAT16,

FLOAT32,

UINT8,

UINT16,

UINT32,

SINT8,

SINT16,

SINT32,

SINT8_PACKED,

UINT8_PACKED,

FLOAT_E4M3, // FP8: 1 sign bit, 4 exp bits, 3 mantissa bits

FLOAT_E5M2 // FP8: 1 sign bit, 5 exp bits, 2 mantissa bits

}

enum D3D12_LINEAR_ALGEBRA_MATRIX_LAYOUT

{

ROW_MAJOR,

COLUMN_MAJOR,

INFERENCING_OPTIMAL,

TRAINING_OPTIMAL

}

CheckFeatureSupport()

Multiply and Multiply-Add
require FLOAT16, SINT8,
E4M3, and E5M2

Accumulate only requires
FLOAT16

Opaque layouts
are populated via
new D3D12 APIs

Uniformity

Works from any shader stage

Works inside non-uniform control flow
But fastest when everything is uniform and waves fully filled

Shader Example
// layer0 = inputVector * inMat0 + biasV0

// The matrix and bias are loaded from memory at offsets moffset0 and boffset0

MatrixRef<M, K> inMat0 = {inputMatrix0, moffset0};

VectorRef<K> biasV0 = {biasVector0, boffset0};

vector<uint32_t, K> layer0 = MulAdd<uint32_t, K>(inputVector, inMat0, biasV0);

layer0 = max(layer0, 0u); // Apply activation function

// layer1 = layer0 * inMat1 + biasV1

// The matrix and bias are loaded from memory at offsets moffset1 and boffset1

MatrixRef<M, K> inMat1 = {inputMatrix0, moffset1};

VectorRef<K> biasV1 = {biasVector0, boffset1};

vector<uint32_t, K> layer1 = MulAdd<uint32_t, K>(layer0, inMat1, biasV1);

layer1 = max(layer1, 0u); // Apply activation function

// output = layer1 * inMat2 + biasV2

MatrixRef<M, K> inMat2 = {inputMatrix1, 0};

VectorRef<K> biasV2 = {biasVector1, 0};

vector<uint32_t, K> output =

MulAdd<uint32_t, K, Interpretation::UnsignedInt32>(layer1, inMat2, biasV2);

output = exp(output);

float3 color;

color.r = output[0] * args.lightcolor;

color.g = output[1] * args.lightcolor;

color.b = output[2] * args.lightcolor;

return color;

}

ByteAddressBuffer inputMatrix0;

ByteAddressBuffer inputMatrix1;

ByteAddressBuffer biasVector0;

ByteAddressBuffer biasVector1;

float3 ps_main(Args args) : SV_TARGET

{

PreProcessing(args);

const int M = 64;

const int K = 64;

// Neural Network computes the output vector

// using the same input args and trained data

// in the form of matrices and bias vectors.

// The input vector is computed from the shader input

vector<uint32_t, M> inputVector = SomeFunction(args);

// Below the physical calculations are replaced by

// NN evaluation. The Matrix and Bias are trained

// offline and loaded to memory.

int moffset0 = 32;

int boffset0 = 64;

int moffset1 = 128;

int boffset1 = 256;

Anis Benyoub

Intel

(Intel content not published here)

Joe Rozek

AMD

(AMD content not published here)

Alexey Panteleev

NVIDIA

(NVIDIA content not published here)

Next Steps

Spec: aka.ms/cooperative-vectors-spec

Developer preview in late April

Retail release by end of year

Follow our blog: aka.ms/directx

Plug: Thursday @ 9:30, “DirectX State of the Union” (Claire Andrews, Adam Miles)

https://microsoft.github.io/hlsl-specs/proposals/0029-cooperative-vector.html
https://devblogs.microsoft.com/directx/enabling-neural-rendering-in-directx-cooperative-vector-support-coming-soon/

Thank you!

Questions?

	Slide 1: Cooperative Vectors and Neural Rendering
	Slide 2: Shader Programming Today
	Slide 3: A New Programming Model
	Slide 4: Why is this interesting?
	Slide 5: Where might we apply this?
	Slide 6: Introducing: Cooperative Vectors
	Slide 7: Cooperative Vectors
	Slide 8: Matrix Formats
	Slide 9: Uniformity
	Slide 10: Shader Example
	Slide 11: Anis Benyoub Intel
	Slide 12: (Intel content not published here)
	Slide 13: Joe Rozek AMD
	Slide 14: (AMD content not published here)
	Slide 15: Alexey Panteleev NVIDIA
	Slide 16: (NVIDIA content not published here)
	Slide 17: Next Steps
	Slide 18: Thank you!
	Slide 19: Questions?

