
Making Networked Games

with the XNA Framework

Shawn Hargreaves

XNA Community Game Platform Team

Microsoft

Introduction

• XNA Framework 1.0 had no networking support
 Use other solutions (System.NET) on Windows

 No network access at all on Xbox

• 2.0 adds a new high level networking API

• Game oriented

• Built on Xbox LIVE and Games for Windows - LIVE

• Up to 31 players per session

Network session types

• To develop and test a networked game
 Use System Link

 Only works over a local subnet

 Xbox requires Creators Club subscription

 PC does not require any subscriptions

 Test using Xbox + PC, or two PC’s

• To play a networked game
 Use LIVE PlayerMatch

 Works over the Internet (including NAT traversal)

 Xbox and PC both require LIVE Gold and Creators Club subscriptions

What the framework does for you

• Finding and joining sessions
 Filtered using title-defined integer properties

• Synchronizing the list of players
 Gamer joined / left events

• Coordinating lobby <-> gameplay transitions

• Reliable UDP protocol

• Voice “just works”

• Host migration (partly: see later)

• Network latency and packet loss simulation

Things you still have to do yourself

• Choose between client/server or peer-to-peer
 The framework doesn’t care which you pick

• Send game data over the network
 Compressed!

• Deal with network latency
 Prediction

 Interpolation

• Make host migration actually work
 It is turned off by default

Client / server architecture

Client / server architecture

Client / server architecture

Client / server architecture

Peer-to-peer architecture

Peer-to-peer architecture

Peer-to-peer architecture

Pros and cons

• Client / server
 Less likely to suffer consistency problems

 Harder to cheat

 “Host advantage”

• Peer-to-peer
 Uses less network bandwidth

 Workload is distributed more evenly across machines

 No lag for local player movement

 Easier to support host migration

Hybrid network topologies

• Some things matter a lot
 Am I dead?

 Who picked up the Pan Galactic Gargle Blaster?

 Who won?

• Some things only matter a little bit
 Where am I?

 What direction am I moving?

• Some things don’t matter at all
 Is the tree branch swaying gently to the left or the right?

 Which way did the 623rd dust particle bounce?

Network game programming is hard!

• Three unfortunate facts of life
 Bandwidth

 Latency

 Packet loss

Bandwidth

Bandwidth

Bandwidth

Bandwidth

• How much is available?
 Assume 64 kilobits (8 kilobytes) per second

 Some players will have more

 Often more downstream than upstream

• How much am I using?
 NetworkSession.BytesPerSecondSent

 NetworkSession.BytesPerSecondReceived

Packet header bandwidth

• Packet headers are bulky
 20 bytes for the IP header

 8 bytes for the UDP header

 ~22 bytes for the XNA Framework

 ~50 bytes total

• If you send a single bool to one other player, 60 times per

second, this requires
 60 x 1 byte of payload data = 60 bytes

 60 x 50 bytes of packet header = 3000 bytes

 Bandwidth usage: 3 kilobytes per second

 98% overhead

Surviving the packet headers

• Send data less often
 Typically 10 to 20 times per second

 Prefer a few big packets to many small ones

 Framework automatically merges packets if you send multiple times before

calling NetworkSession.Update

 This is why games prefer UDP over TCP

• Example
 8 players (each sending to 7 others)

 Transmit 10 times per second

 64 bytes of game data per packet

 Bandwidth usage: (64 + 50) * 7 * 10 = 7.8 kilobytes per second

 44% overhead

Voice bandwidth

• Voice data is ~500 bytes per second

• By default, all players can talk to all others

• In a 16 player game, talking to all 15 other players
 500 * 15 = 7.3 kilobytes per second

 Yikes

• LocalNetworkGamer.EnableSendVoice
 Only talk to players on your team

 Only talk to people near you in the world

 But avoid changing this too often!

Compression

• Generalized compression algorithms are not much use
 Packets are typically too small to provide a meaningful data window

• Prioritize data
 Send less important things less often

 Update further away objects less often

 Don’t bother synchronizing objects that are behind you

• Send deltas instead of complete state
 But not if this means having to make everything reliable!

• Send smaller data types
 int -> byte

 Matrix -> Quaternion + Vector3

 Avoid strings

Compression: quantization

float rotation; // in radians

packetWriter.Write(rotation);

rotation *= 256;

Rotation /= MathHelper.TwoPi;

packetWriter.Write((byte)rotation);

Compression: bitfields

bool isAlive, isRespawning, isFiring, hasPowerup;

packetWriter.Write(isAlive);

packetWriter.Write(isRespawning);

packetWriter.Write(isFiring);

packetWriter.Write(hasPowerup);

byte bitfield = 0;

if (isAlive) bitfield |= 1;

if (isRespawning) bitfield |= 2;

if (isFiring) bitfield |= 4;

if (hasPowerup) bitfield |= 8;

packetWriter.Write(bitfield);

Compression: 16 bit floats

float angle;

float speed;

packetWriter.Write(angle);

packetWriter.Write(speed);

HalfSingle packedAngle = new HalfSingle(angle);

HalfSingle packedSpeed = new HalfSingle(speed);

packetWriter.Write(packedAngle.PackedValue);

packetWriter.Write(packedSpeed.PackedValue);

Compression: random number seeds

foreach (Star star in starField)

{

packetWriter.Write(star.Position);

}

int seed = (int)Stopwatch.GetTimestamp();

packetWriter.Write(seed);

Random random = new Random(seed);

foreach (Star star in starField)

{

star.Position = new Vector2((float)random.NextDouble(),

(float)random.NextDouble());

}

Latency

Latency

• Speed of light = 186282 miles per second

• Nothing can travel faster than this

• Some distances
 Seattle to Vancouver: 141 miles = 0.8 milliseconds

 Seattle to New York: 2413 miles = 13 milliseconds

 Seattle to England: 4799 miles = 26 milliseconds

Latency

• It’s actually worse than that

• Network data does not travel through a vacuum
 Speed of light in fiber or copper slows to 60%

• Each modem and router along the way adds latency
 DSL or cable modem: 10 milliseconds

 Router: 5 milliseconds on a good day, 50 milliseconds if congested

Latency

• So how bad can it get?
 Xbox games are expected to work with latencies up to 200 milliseconds

• How can I try this at home?
 NetworkSession.SimulatedLatency

Dealing with latency

• Machine A is controlling object A

• Machine A sends a packet to B, containing
 The position of A

 The velocity of A

• Machine B reads the packet
 Uses NetworkGamer.RoundTripTime to guess how old the data is

 Estimates the current position of the object

 currentPosition = packetPosition + velocity * estimatedLatency

• Needs lots of damping and smoothing to look good

Dealing with latency: improved

• Use the game simulation to predict object movement

• Machine A sends a packet to B, containing
 The position of A

 The velocity of A

 Current user inputs controlling A

 Any other simulation or AI state which could affect the behavior of A

• Machine B reads the packet
 Resets local copy of A to the state described in the network packet

 Runs local update logic on A to “catch up” to the current time

for (int i = 0; i < estimatedLatencyInFrames; i++)

a.Update();

 Smooths out the result as before

Packet Loss

Packet loss

• Traditionally, games had to worry about
 Packets never being delivered

 Packets being delivered in the wrong order

 Corrupted packet data

 Packets being tampered with by cheaters

 Accidentally reading packets from some other program

 Packet data being examined in transit

• The XNA Framework helps with all of these

Packet loss

• Traditionally, games had to worry about
 Packets never being delivered

 Packets being delivered in the wrong order

 Corrupted packet data

 Packets being tampered with by cheaters

 Accidentally reading packets from some other program

 Packet data being examined in transit

• The XNA Framework helps with all of these

- reliable UDP (optional)

- in-order delivery (optional)

- secure packets

- secure packets

- secure packets

- secure packets

Packet loss

• To avoid packets being delivered in the wrong order
 SendDataOptions.InOrder

 This is very cheap

 Once a later packet has been received, earlier ones are simply discarded

• To make sure packets are delivered at all
 SendDataOptions.Reliable or SendDataOptions.ReliableInOrder

 More expensive

 Can cause additional latency

• Recommendation
 Use SendDataOptions.InOrder for most game data

Packet loss

• How bad can it get?
 Xbox games are expected to work with packet loss up to 10%

• How can I try this at home?
 NetworkSession.SimulatedPacketLoss

QUESTIONS?

THE END

