
Making Networked Games

with the XNA Framework

Shawn Hargreaves

XNA Community Game Platform Team

Microsoft

Introduction

• XNA Framework 1.0 had no networking support
 Use other solutions (System.NET) on Windows

 No network access at all on Xbox

• 2.0 adds a new high level networking API

• Game oriented

• Built on Xbox LIVE and Games for Windows - LIVE

• Up to 31 players per session

Network session types

• To develop and test a networked game
 Use System Link

 Only works over a local subnet

 Xbox requires Creators Club subscription

 PC does not require any subscriptions

 Test using Xbox + PC, or two PC’s

• To play a networked game
 Use LIVE PlayerMatch

 Works over the Internet (including NAT traversal)

 Xbox and PC both require LIVE Gold and Creators Club subscriptions

What the framework does for you

• Finding and joining sessions
 Filtered using title-defined integer properties

• Synchronizing the list of players
 Gamer joined / left events

• Coordinating lobby <-> gameplay transitions

• Reliable UDP protocol

• Voice “just works”

• Host migration (partly: see later)

• Network latency and packet loss simulation

Things you still have to do yourself

• Choose between client/server or peer-to-peer
 The framework doesn’t care which you pick

• Send game data over the network
 Compressed!

• Deal with network latency
 Prediction

 Interpolation

• Make host migration actually work
 It is turned off by default

Client / server architecture

Client / server architecture

Client / server architecture

Client / server architecture

Peer-to-peer architecture

Peer-to-peer architecture

Peer-to-peer architecture

Pros and cons

• Client / server
 Less likely to suffer consistency problems

 Harder to cheat

 “Host advantage”

• Peer-to-peer
 Uses less network bandwidth

 Workload is distributed more evenly across machines

 No lag for local player movement

 Easier to support host migration

Hybrid network topologies

• Some things matter a lot
 Am I dead?

 Who picked up the Pan Galactic Gargle Blaster?

 Who won?

• Some things only matter a little bit
 Where am I?

 What direction am I moving?

• Some things don’t matter at all
 Is the tree branch swaying gently to the left or the right?

 Which way did the 623rd dust particle bounce?

Network game programming is hard!

• Three unfortunate facts of life
 Bandwidth

 Latency

 Packet loss

Bandwidth

Bandwidth

Bandwidth

Bandwidth

• How much is available?
 Assume 64 kilobits (8 kilobytes) per second

 Some players will have more

 Often more downstream than upstream

• How much am I using?
 NetworkSession.BytesPerSecondSent

 NetworkSession.BytesPerSecondReceived

Packet header bandwidth

• Packet headers are bulky
 20 bytes for the IP header

 8 bytes for the UDP header

 ~22 bytes for the XNA Framework

 ~50 bytes total

• If you send a single bool to one other player, 60 times per

second, this requires
 60 x 1 byte of payload data = 60 bytes

 60 x 50 bytes of packet header = 3000 bytes

 Bandwidth usage: 3 kilobytes per second

 98% overhead

Surviving the packet headers

• Send data less often
 Typically 10 to 20 times per second

 Prefer a few big packets to many small ones

 Framework automatically merges packets if you send multiple times before

calling NetworkSession.Update

 This is why games prefer UDP over TCP

• Example
 8 players (each sending to 7 others)

 Transmit 10 times per second

 64 bytes of game data per packet

 Bandwidth usage: (64 + 50) * 7 * 10 = 7.8 kilobytes per second

 44% overhead

Voice bandwidth

• Voice data is ~500 bytes per second

• By default, all players can talk to all others

• In a 16 player game, talking to all 15 other players
 500 * 15 = 7.3 kilobytes per second

 Yikes 

• LocalNetworkGamer.EnableSendVoice
 Only talk to players on your team

 Only talk to people near you in the world

 But avoid changing this too often!

Compression

• Generalized compression algorithms are not much use
 Packets are typically too small to provide a meaningful data window

• Prioritize data
 Send less important things less often

 Update further away objects less often

 Don’t bother synchronizing objects that are behind you

• Send deltas instead of complete state
 But not if this means having to make everything reliable!

• Send smaller data types
 int -> byte

 Matrix -> Quaternion + Vector3

 Avoid strings

Compression: quantization

float rotation; // in radians

packetWriter.Write(rotation);

rotation *= 256;

Rotation /= MathHelper.TwoPi;

packetWriter.Write((byte)rotation);

Compression: bitfields

bool isAlive, isRespawning, isFiring, hasPowerup;

packetWriter.Write(isAlive);

packetWriter.Write(isRespawning);

packetWriter.Write(isFiring);

packetWriter.Write(hasPowerup);

byte bitfield = 0;

if (isAlive) bitfield |= 1;

if (isRespawning) bitfield |= 2;

if (isFiring) bitfield |= 4;

if (hasPowerup) bitfield |= 8;

packetWriter.Write(bitfield);

Compression: 16 bit floats

float angle;

float speed;

packetWriter.Write(angle);

packetWriter.Write(speed);

HalfSingle packedAngle = new HalfSingle(angle);

HalfSingle packedSpeed = new HalfSingle(speed);

packetWriter.Write(packedAngle.PackedValue);

packetWriter.Write(packedSpeed.PackedValue);

Compression: random number seeds

foreach (Star star in starField)

{

packetWriter.Write(star.Position);

}

int seed = (int)Stopwatch.GetTimestamp();

packetWriter.Write(seed);

Random random = new Random(seed);

foreach (Star star in starField)

{

star.Position = new Vector2((float)random.NextDouble(),

(float)random.NextDouble());

}

Latency

Latency

• Speed of light = 186282 miles per second

• Nothing can travel faster than this

• Some distances
 Seattle to Vancouver: 141 miles = 0.8 milliseconds

 Seattle to New York: 2413 miles = 13 milliseconds

 Seattle to England: 4799 miles = 26 milliseconds

Latency

• It’s actually worse than that

• Network data does not travel through a vacuum
 Speed of light in fiber or copper slows to 60%

• Each modem and router along the way adds latency
 DSL or cable modem: 10 milliseconds

 Router: 5 milliseconds on a good day, 50 milliseconds if congested

Latency

• So how bad can it get?
 Xbox games are expected to work with latencies up to 200 milliseconds

• How can I try this at home?
 NetworkSession.SimulatedLatency

Dealing with latency

• Machine A is controlling object A

• Machine A sends a packet to B, containing
 The position of A

 The velocity of A

• Machine B reads the packet
 Uses NetworkGamer.RoundTripTime to guess how old the data is

 Estimates the current position of the object

 currentPosition = packetPosition + velocity * estimatedLatency

• Needs lots of damping and smoothing to look good

Dealing with latency: improved

• Use the game simulation to predict object movement

• Machine A sends a packet to B, containing
 The position of A

 The velocity of A

 Current user inputs controlling A

 Any other simulation or AI state which could affect the behavior of A

• Machine B reads the packet
 Resets local copy of A to the state described in the network packet

 Runs local update logic on A to “catch up” to the current time

for (int i = 0; i < estimatedLatencyInFrames; i++)

a.Update();

 Smooths out the result as before

Packet Loss

Packet loss

• Traditionally, games had to worry about
 Packets never being delivered

 Packets being delivered in the wrong order

 Corrupted packet data

 Packets being tampered with by cheaters

 Accidentally reading packets from some other program

 Packet data being examined in transit

• The XNA Framework helps with all of these

Packet loss

• Traditionally, games had to worry about
 Packets never being delivered

 Packets being delivered in the wrong order

 Corrupted packet data

 Packets being tampered with by cheaters

 Accidentally reading packets from some other program

 Packet data being examined in transit

• The XNA Framework helps with all of these

- reliable UDP (optional)

- in-order delivery (optional)

- secure packets

- secure packets

- secure packets

- secure packets

Packet loss

• To avoid packets being delivered in the wrong order
 SendDataOptions.InOrder

 This is very cheap

 Once a later packet has been received, earlier ones are simply discarded

• To make sure packets are delivered at all
 SendDataOptions.Reliable or SendDataOptions.ReliableInOrder

 More expensive

 Can cause additional latency

• Recommendation
 Use SendDataOptions.InOrder for most game data

Packet loss

• How bad can it get?
 Xbox games are expected to work with packet loss up to 10%

• How can I try this at home?
 NetworkSession.SimulatedPacketLoss

QUESTIONS?

THE END

