








MIDI Pattern Processor














Shawn Hargreaves,


Solo Project,


1995/96





�
Introduction


The computer has become an accepted part of the compositional process, both as a tool to aid in the realisation of musical ideas and as a potential source of original material. Computers are ideally suited to performing the many menial tasks associated with manipulating sound electronically, and they can also be used to generate music algorithmically from sets of formulae and rules provided by the composer. In all of these applications, however, it is the human who is in control. The composer is in charge of planning the piece and making artistic judgements about the music, and then uses a computer to fill in the details by working out the process which they have specified, rather in the manner of a cartoon artist drawing an outline shape and then delegating the task of filling in the colours to an apprentice. The computer is doing nothing which could not be duplicated manually with a pencil and paper and some dice: it simply provides a faster and more convenient way of executing a set of rules.





Many attempts have been made to design computer systems that can compose music entirely automatically, but the success of such an approach is questionable. Apart from the dubious aesthetic value of a piece produced without any human involvement, the crucial limitation of all computer programs is that they can only work within the limits imposed by the rules that have been programmed into them. While it may be possible to train a computer to produce a convincing Bach pastiche by teaching it the rules of Baroque harmony and feeding it examples of Bach's music to analyse, it is unlikely that such a program will ever produce anything more than representative samples of the input material.





Where do musical ideas originate? This is a much discussed and never satisfactorily answered question. Some undoubtedly come from the intellectual processes of rationalisation and logical thinking, which the composer would later be able to explain and justify. Others, however, seem to spring from some less obvious source, which could variously be described as divine inspiration, the romantic 'muse', the workings of the subconscious mind, or simply the random firing of neural synapses. This presumably differs from composer to composer, but speaking from personal experience, ideas frequently occur to me in a completed form without me going through a conscious process of constructing them. Practical experimentation with a real instrument is also an important part of my composing, partly as a way of trying out and testing material, and also because new ideas often occur to me while I am playing. These thoughts are of course totally unformed, and need to be subjected to conscious developmental processes to turn them into a finished piece, but the genesis of the idea takes place on a subconscious level.





In designing this system I wanted to explore ways in which a computer could assist with these less tangible aspects of composition. I was interested in a program which would allow interaction in both directions between the user and the computer, rather than the composer simply telling the computer what to do, and wanted something that could be used without any clear idea of where the music was going or what final output was desired. The program can be seen as an 'intelligent' instrument on which the composer can try out their ideas. It will repeat the material which is fed into it, but gradually alter it to produce a range of related ideas. It is then up to the composer to reject these suggestions, to take them up and develop them further, or to respond by feeding further variations of their own back into the computer and thus repeating the cycle.





To implement such a system I adopted the Artificial Intelligence technique of evolutionary development, often described as genetic programming. This approach simulates Darwinian evolution in nature, maintaining a pool of available genes and breeding items from the pool to produce new material. Random mutations are introduced at each step, and the more successful results are kept while the failures are discarded, so the material will gradually move towards the optimal solution (as in Nietzsche's concept of the 'superman'). To produce the best results, such a system requires a large population and a very slow mutation rate (human DNA differs by only a tiny fraction of a percent from one person to another), but some interesting results have been obtained in more limited applications such stock market trading and optimising computer machine code. The major advantage of this technique is that it depends upon random alterations rather than any preconceived notion of what it is trying to achieve, so it is capable of moving in unexpected and original directions. A common problem when trying to implement it is finding a way to evaluate the resulting material ('survival of the fittest' is only a meaningful concept if the fittest can be differentiated from the less fit), but this was not a problem in my case because the interactive nature of the program meant that the user could provide the necessary value judgements.





The term 'organic' is frequently applied to music, so the natural processes of mutation and selection seem very relevant to the task of constructing musical material. I felt that altering things on a purely random basis would not be sufficient, however, since the probability of making an improvement would be far less than the chance of producing something worse than the original. My program had to produce results over a period measured in minutes and hours rather than millennia, so it needed to employ shortcuts that would maximise the chances of a mutation generating something interesting. I decided to program a number of different types of mutator, some of which would make simple random changes (adding and deleting notes, changing pitches, etc.), but which could also employ common musical transformations such as transposition and inversion (see Appendix A for a complete list). This severely restricts the flexibility of the program, since it involves imposing preconceived ideas and thus limiting the number of directions in which the program can develop the material, but some limitations were unfortunately necessary due to the constraints of time and practicality. I have tried to make the mutator functions as generic as possible, and avoided referring to any specifics of pitch, harmony, rhythm, etc, other than what can be derived from the input material, but the end result is affected by the developmental processes at least as much as by the material which is being developed, and the range of possible processes is undeniably reduced by this approach.





Having several different mutation techniques suggested a further way in which the value judgements provided by the user can be made to influence the program. As well as determining which of the available fragments of material are the 'fittest' to be developed further and which should be abandoned, the user response can alter the fitness weightings of the mutator functions themselves. For example, if some material was produced by transposing a pattern of notes to a different pitch, and the user reacts positively to the result, the 'transposition' mutator should be adjusted so that it is more likely to be used in the future. This provides a mechanism by which the program will gradually adapt to the needs of a specific situation. It is still limited to a few in-built types of mutation, but it is able to learn which of the mutator functions are most likely to produce interesting results.








�
Implementation Details


Many of the techniques used in this program, and in particular the algorithms used by the mutator functions, were developed with Tabula Vigilans, but this is not really suited to simultaneously recording, processing, and playing back multiple patterns of notes. As I added more things to the system it also became extremely slow, so I decided to move to C instead. I developed it on an IBM-PC, using the gnu C compiler, and later ported it to the Atari ST, with Mark Williams C. It should be easy to move it to other compilers and machines, since all the input and output is done via the macros in sysdep.h.





The core of the program is in main.c, which maintains a list of functions that need executing periodically (for mutating patterns and processing user feedback) and then calls do_midi() and do_ui() as often as possible in whatever time is left. The user interface functions (in ui.c) are in charge of dealing with key presses and redrawing the screen when required. The MIDI processing routines (in midi.c) are responsible for handling input from the MIDI interface, passing it through to the MIDI output and recording it if required, and also for playing back patterns from the global pool of material.





The first version of the program recorded everything input from the MIDI interface, and broke it up into sections for manipulation by looking at where gaps occurred in the input. This approach was not very satisfactory, because I would frequently play in some notes and then decide that they were not what I had intended, but the program would start developing them regardlessly. I could force it to abandon the idea by providing negative feedback, but this took some time to have an effect, and I wanted an easy way to try out material without letting the program respond to it. I decided to add the ability to switch the program into and out of recording mode (using the sustain pedal), so that I could select which parts of what I played were simply my experimentation and which were intended as input for the program to use.





Another problem with the initial design lay in the handling of rhythmic music. The program stores the available material in a global gene pool of short patterns or motifs. To convert these into a continuous stream of notes which it can play on a MIDI output device, it randomly selects patterns from the pool and plays a number of them at a time (exactly how many can be adjusted with the 'density' parameter), starting new ones whenever one of them finishes playing. This worked very well for music without a clear pulse, but for more rhythmic material it is necessary to synchronise all the playing patterns so that their beats coincide. To do this, the program needs to know where the downbeats are located, and because automatically analysing the pulse would be extremely difficult and unreliable, I decided to add a metronome which can be used to ensure that everything is lined up correctly. I also wrote a routine to quantize the recorded material (rounding the starting time of every note to the nearest fraction of a beat), in order to correct small timing errors in the input. This feature may not always be required, and it can be turned off, but when patterns are altered and combined in unexpected ways, what were originally minor inaccuracies can become very obvious.





The 'fitness' of each item is stored as an integer probability weighting, and these are handled by the functions in list.c. This maintains generic lists of items, each of which has a text description (only needed for the mutator functions, because they can be accessed directly by the user), a probability weighting, and a 32 bit data field which describes the item itself. How the data field is used depends on the type of item stored in the list: for the global pool of available patterns it is a pointer to a PATTERN structure, for the global list of mutator functions it is a pointer to a MUTATOR structure, and for the lists of sub-types required by some of the mutators (see below) it is interpreted directly as an integer value. The function pick_from_list() is used to make a random selection from one of these item lists when selecting patterns to play or as parents for creating new patterns, and when selecting which mutator functions to employ. It biases the selection according to the probability weightings of each item in the list, so if one item has twice as high a weight as another, it will be twice as likely to be selected.





New patterns are created by the function mutate(), in mutate.c. This uses the probability list routines to select two existing patterns as parents (some mutators, such as transposition, only require a single input, but others can combine elements from two different source patterns) and to choose a mutator function. It then calls the mutator, and adds the result back into the global pattern pool (which is managed by pattern.c). A few of the mutator functions also take an integer parameter to control the details of what operation they perform (for example the inversion mutator can perform a literal intervallic inversion or can invert the material without changing its scale), and this is chosen from a sub-list of probability weightings. I chose this approach, rather than writing separate mutators for each sub-category, because it allows for better adjustment of the mutator weights in response to user feedback. With this two-level hierarchy, user input can affect the weights of whole families of mutation types, for example a positive reaction to a pattern produced by scalic inversion can be used to make inversion in general more likely to be chosen again, as well as making scalic inversion more likely than literal inversion. The actual mutator routines are contained in the files dyn.c, invert.c, pitch.c, rhythm.c, and transpos.c, and they are assisted by the functions in helper.c. Refer to Appendix A for a complete list of the mutation types.





Value judgements are input by movements of the pitch bend wheel, and are processed by the functions in feedback.c. This was one of the hardest parts of the program to implement, and is perhaps the least successful. The problem is that when multiple patterns are playing simultaneously, user feedback intended to refer to one specific pattern will mistakenly be applied to all the active patterns. This difficulty can be minimised by making the feedback have a very sudden, extreme effect on individual patterns, which given that the mutator functions only make small alterations and so there is usually extensive duplication of similar patterns, will over time average out to have the correct result. For example, suppose that there are three similar patterns, A1, A2, and A2, and three patterns based on a conflicting idea, B1, B2, and B3, and the user likes the A material but wants to get rid of B. If the program plays an A pattern together with a B pattern they will be undecided, and so will not provide any feedback (and even if they do provide negative feedback, the valuable material will not be lost because there will still be two A patterns left). Eventually, however, the program will play two A patterns together, at which point the user can provide positive feedback to encourage it to continue with this idea, or two B patterns together, at which point they can give a negative response to delete the patterns.





As a result of the large amount of duplication within the pool of patterns, the feedback system works much better if it is applied not only to the currently playing patterns but also to others which resemble them. There is no need to do a complicated fuzzy comparison to determine these similarities, because it is easy to keep track of the relationships by simply remembering which patterns are mutations of others. The current system stores a pointer to its parent within each pattern, and uses this to apply feedback (on a more subtle level than with the pattern itself) to the parents and immediate descendants of the active material. Ideally this should be extended to keep track of all relationships, with the effect of the user response diminishing as the distance from the active pattern grows, but tracing relationships further than one level is too time consuming to be practical in real-time.





The inevitable delay between hearing something, evaluating it, and responding to it also causes difficulties with the user response system. To overcome this lag it is necessary to backtrack and apply the feedback to the patterns that were active shortly before it is actually received. This increases the potential for mistakenly relating the input to the wrong material, but there is no way to avoid it. At present the program adjusts all the patterns which have been active within the last 1.5 seconds: a figure based on an estimation of my average response time.





It would also be possible to apply the user feedback to the choice of which patterns to play at any given moment. The probability weightings are used in this decision (patterns with high weightings are more likely to be chosen), but the program makes no checks to see what other material is playing simultaneously. Needless to say this is an extremely important factor in determining whether a pattern sounds good or not, and something which the system ought to be aware of. To implement a feedback system that could affect which patterns are played together, however, would require knowledge about every possible combination of the material. Apart from needing a lot of space to store this information, it would be virtually impossible to interpret the user feedback in a meaningful way without simply trying every permutation, and that would take far too long to attempt. Regretfully, therefore, I had to abandon this possibility.

















�
User Manual


This program processes MIDI data in real-time, responding to input from a MIDI keyboard by playing new material derived from the ideas which are input. It stores a pool of motifs or 'patterns', which are initially recorded from the MIDI input, and then produces new patterns by modification of the material which is already in the pool. The user can play the keyboard 'live' on top of the output from the program, and can input new patterns at any point. They can also influence the output by movements of the pitch bend wheel, and several parameters controlling the program (such as the density of the output and the ways in which it can change the material) can be altered in real-time.





To use the program you will also need a MIDI keyboard with a sustain pedal controller, and a MIDI sound module, which should be connected to the MIDI input and output of the computer respectively. The program performs a MIDI thru function as well as recording and processing the material, so if you are using the same synthesiser for input and output you should be sure to set the 'local off' switch.





Upon running the program you will see a display like the following:





[1998 modification: graphic removed to save space]





You will also hear a metronome tick played on your sound output device. By default this uses note #42 on MIDI channel 10, which is the General MIDI hi-hat sound. This can be altered with the command line parameters '-c<x>' and '-n<x>', where -c sets the metronome channel and -n sets the note number. The metronome can be toggled on and off while the program is running by pressing 't', and the tempo can be changed by pressing 's' to decrease it and 'S' to increase.





At this point anything you play on your keyboard will be passed through to the MIDI output, and should be heard on your synthesiser. The program will not record or respond to what you play, however, unless you tell it to do so by pressing the sustain pedal controller. To record a pattern which the program can mutate, you should depress the sustain pedal, play in some material, and release the sustain pedal when you want to stop recording. As soon as you have recorded a pattern, it will be repeated and gradually altered to produce new material. The output density (i.e. the number of patterns which are played at a time) can be altered by pressing 'd' and 'D' to decrease and increase respectively, and the mutation rate (which controls how quickly the patterns are changed) by pressing 'm' and 'M'.





By default the output is sent to MIDI channel 1, but this can be altered by pressing 'c' and 'C'. Patterns are always played on the channel which was in use when they were recorded, so if you record several patterns on different MIDI channels, a multi-timbral synthesiser can be used to play more than one sound at a time.





To prevent the timing errors in your input from gradually accumulating (which can produce very unpleasant results when patterns are played in unexpected combinations), the recorded material will be quantized, i.e. rounded to the nearest metronome beat. This behaviour can be toggled on and off by pressing 'q', and the fraction of a beat to which notes will be rounded can be set by pressing 'r' and 'R'. By default the quantize ratio is set to 1/4, so everything you play will be rounded to the nearest quarter of a beat, or semiquaver, but this can be set to any fraction you like to accommodate more complex rhythmic divisions.





To empty the entire pool of patterns (both the ones you recorded directly and those which have been produced by mutation of the original material), press 'delete' or 'backspace'. Pressing 'space' will temporarily pause the output, and pressing 'esc' will quit from the program.





The program stores all the patterns that you input in a pool of available material, from which it randomly selects ones to play at any given moment. It changes and develops the material by adding new patterns to the pool, which are produced by applying a randomly selected mutator function to one or more of the already existing patterns. The program contains a range of mutators including transposition, inversion, cutting small groups of notes from within a pattern, gluing different bits of material together, and combining aspects of different patterns such as using the rhythm of one pattern with the pitches of a second, or forcing a pattern into a mode derived from the pitch set of another. See Appendix A for a complete list of the different types of mutation.





Every pattern in the pool of material, and each mutator function, has an associated probability weighting which describes how 'good' it is considered to be. These weights are used to bias the random selection routines in favour of the more popular material, so when deciding which patterns to play, and which patterns to mutate when producing new material, and which mutator function to apply to them, the ones with the highest weightings are more likely to be chosen. To prevent the endless accumulation of material, the program periodically needs to perform a cleanup and delete some excess patterns, and for this it uses a reverse weighting system, removing the patterns with the lowest weights.





When you first record a pattern its weighting will be set to a fairly high value, which will be gradually reduced with the passage of time so that recently recorded material will take priority over older items. It is also possible to provide manual feedback on the output of the program via the pitch bend controller (the position of which is displayed at the bottom of the screen), to make more detailed adjustments to the probability weights. To indicate approval of what is being played, move the controller towards the positive position, and move it towards the negative pole to reject material. A small movement will make fairly subtle adjustments, but if you move the controller to the extreme limit of its range the probability weights will rapidly reach their maximum (in which case the material will almost certainly be developed further) or minimum (in which case the material will be abandoned) values. This feedback system is limited in accuracy, because when several patterns are being played at once there is no way to specify which one you want to adjust, but it does provide a way to reject patterns that you don't like, and to encourage the program to continue working with material that you are interested in. Another problem is the delay in response time between hearing something and moving the pitch bend controller. In an attempt to overcome this, the feedback is applied not only to the patterns which are currently playing, but to all the material which has been heard within the last one and a half seconds.





As well as altering the probability weights attached to the patterns themselves, the pitch bend feedback is used to make small adjustments to the weightings of the mutator functions which were used to produce the material. If a pattern was produced by transposing another pattern up a fifth, and this receives positive feedback, the transposition mutator will be more likely to be chosen in the future. On the other hand, if a pattern produced by inversion is rejected, inversion will be less likely to be used again.





For more detailed control over the choice of mutator function, the weightings can be adjusted manually. To do this, press 'v' from the main screen of the program, which will move you to the following display:





[1998 modification: graphic removed to save space]





The probabilities can be altered by pressing the keys listed down the left of the screen (for example 'm' reduces the weighting of inversion, and 'M' increases it). Press 'esc' to return to the initial screen. Some of the mutators are divided into several sub-types, for example the different intervals by which material can be transposed, and these can be adjusted by pressing one of the numbers listed down the right of the screen.





The probability weightings of the mutator functions can be saved into an ASCII text file by specifying the name of the file on the command line. For example, running 'pp prob.dat' would attempt to read the weightings from prob.dat at program startup (if the file does not exist, this will have no effect), and will write the modified probabilities back into the file when the program exits.





For debugging purposes, and in case you need more detailed information about exactly which mutator functions are being used and when patterns are being created and destroyed, running 'pp trace' will send extra information about what the program is doing to stderr. If possible this data should be redirected into a file or sent to a different window, because it will interfere with the regular screen display if stderr is connected to the console.


�
Conclusion


On a purely practical level, one of the major limitations of the system is that there is no easy way to capture the output. The MIDI playback device can be used to dump an analogue signal onto tape, but that makes it difficult to later edit and extract sections of the material. It would also be possible to use a second computer running a sequencer to record the MIDI output, but such a solution is clumsy and would require two computers. It would be much better if the program could log all its output directly into a standard MIDI file.





The program also lacks the ability to make generalisations about register and tempo, which I think could improve the output considerably. From the starting patterns, mutations such as transposition move the material towards more extreme pitches, and augmentation and diminution produce extremes of tempo. Because there are no limiting factors on these trends (except for the maximum MIDI note number where pitch is concerned), given sufficient time the patterns will go beyond the bounds of what is aesthetically pleasing. An example of this is the first piece on the accompanying tape, which developed some very rapid passages of notes that I did not like. I was able to curb this trend with the pitch bend feedback, but it would be better if the system could restrict the material automatically. It would be possible to impose artificial limits, but these would result in the music moving towards a saturation point where it could not go beyond the limits but all possibilities between the two bounds were present in equal numbers. Making the limits fuzzy, so their strength increases as the material gets closer to them, would prevent such a saturation, but it would prevent any extremes at all, which may be desired as a source of interesting and useful effects.





A better solution would be to add mutators that copy tempo and register from one pattern to another. This approach is used with regard to pitches, as there are some mutators which introduce new pitches (transposition, note displacement, etc.) and others which restrict patterns to a more limited set of pitches by copying a 'mode' or pitch set from one pattern to another. These two trends effectively cancel each other out, with the user feedback being able to adjust the balance between the two in order to temporarily sway the program in one direction or the other. New pitch material is gradually introduced, but the music is prevented from reaching a chromatic saturation by the restricting elements. I think a similar approach could work with other aspects of the music, for example having mutators that transpose a pattern to have the same median pitch as another, and that augment or diminish a pattern so that the average time between notes is the same as in another.





I think that the system succeeds in some of what it set out to do, but with several major reservations. It is possible to use it without any preconceived notion of what output is desired, and even without understanding how the program works, and to still obtain interesting results. The user is very limited in their ability to control the output, however, and it only works well with certain limited types of input material.





The biggest problem is the lack of detailed control over the feedback system, which means that although it is possible to have a dramatic influence on the output of the program, it can at times be a rather hit-and-miss affair. It might be possible to improve this somewhat by extending the feedback further through the families of related patterns, and by applying it to combinations of patterns as well as individual items, but it will always be a clumsy and inaccurate mechanism.





Over the course of my experimentation with the program it has produced several interesting and original musical ideas, which I feel are worth developing further into finished pieces. Whether these are better or were more easily obtained than what I could have produced on my own, however, I am undecided. The output is very rough and needs a lot of modification and reworking before it can be used in a real piece, and the few valuable things it produces are scattered among large amounts of totally worthless material. There is also a certain quality of 'sameness' among the music that it creates, which means that although it may be a useful tool to employ in one or two compositions, it is not really suitable as a general tool for any style of music.





Another application in which I think the system could be helpful is as a quick and easy way of generating dense textures for use as a backdrop to other material. With the mutation rate set fairly low, and only a subset of the mutator functions in use, the program can be used as a kind of glorified echo unit to repeat and extend a set of fragments provided by the composer.





�
Appendix A: list of mutators


{	Transpose


Transposes a pattern up or down by an interval anywhere from a semitone to an octave. The weightings for each interval can be adjusted individually. By default, octave transposition is much more likely than any other interval. I have tried to avoid making assumptions about the nature of the musical material, but the importance of the octave is an almost universal principle so I thought it should be included.


{	Modal Transpose


Transposes a pattern, and then forces the resulting material back into the same mode which was used by the original. For example when transposing the notes C, D, F, G up a tone, the C would be transposed to a D, and left at that pitch because D is in the original. D would be transposed up to E, and then rounded another semitone to F. The F would be transposed to G, and the G would be unchanged, because after transposing it up a tone it would be rounded back to the original pitch.


{	Scalic Transpose


Shifts a pattern up or down by a number of scale steps. The weightings for each number of steps from -3 to 3 can be adjusted individually. By default, shifts by a single step are more likely than by two or three steps. A scalic transposition differs from a modal transposition in that it does not round the pitches after transposing them, but simply shifts everything along within a scale. For example, where a modal transpose of C, D, F, G up a tone results in D, F, G, G, a scalic transpose up one step would produce D, F, G, and C in a higher octave.


{	Copy Mode


This mutator takes two patterns as input, and rounds every note in the first pattern to the closest pitch which occurs in the second pattern. This allows 'keys' or particular groupings of important notes to spread from pattern to pattern, and if repeated will eventually reduce everything to a very small group of pitches or even a single note.


{	Copy Rhythm


This mutator takes two patterns as input, and produces another which combines the rhythm of the first with the pitches of the second. This produces particularly interesting results if one of the input patterns is chordal and the other is a linear melody, since it will then change horizontally orientated material to vertical, and vice versa. 


{	Cut Block


This mutator cuts a small group of notes out of the middle of a larger pattern, producing many small fragments of material.


{	Paste Blocks


This mutator takes two patterns as input, and glues them together. It randomly decides whether to glue the entire patterns or to cut a chunk out of each and only glue the parts. There are three sub-versions of this mutator:


v	Paste at Pitch


Literal paste: the two chunks are unchanged, and are simply placed one after the other.


v	Paste Transposed


The second chunk is transposed to have the same median pitch as the first.


v	Modally Transposed


The second chunk is transposed to have the same median pitch as the first, and rounded to use the same mode as the first.


{	Time Stretch


There are two sub-versions of this mutator:


v	Augmentation


Doubles all the note lengths in the pattern.


v	Diminution


Halves all the note lengths in the pattern.


{	Alter Range


Alters the intervallic span of a pattern. There are three sub-versions of this mutator:


v	Range to Octave


Compresses the pattern so that it fits within a single octave. Any pitches lying outside the valid range will be shifted up or down by the required number of octaves.


v	Stretch Range


Expands or compresses the range of a pattern, by multiplying or dividing all the intervals by a scaling factor.


v	Modal Stretch


Like 'stretch range', but after stretching the pattern it rounds each note to the nearest pitch which was present in the original version of the material.


{	Displace Notes


Alters the pitches of selected notes from within a pattern. There are four sub-versions of this mutator:


v	Octave Displacement


Shifts randomly selected notes up or down by an octave, producing a more angular version of the material.


v	Random Displacement


Shifts randomly selected notes up or down by randomly selected amounts.


v	Modal Displacement


Shifts randomly selected notes up or down by randomly selected amounts, and rounds the resulting note to the nearest pitch which is present in the original version of the pattern.


v	Swap Pitches


Swaps the pitches of randomly selected notes from within the pattern. This version does not introduce or remove any pitches, but simply rearranges the material that is already there.


{	Add Notes


Adds new notes to a pattern, rounding their times to the nearest quantize point. There are two versions of this mutator:


v	Random Thicken


Adds randomly selected pitches.


v	Modal Thicken


Rounds each note to the nearest pitch which is already present in the pattern.


{	Remove Notes


Deletes a number of randomly chosen notes from a pattern, producing a thinned-down version of the material.


{	Invert


Inverts a pattern. There are two versions of this mutator:


v	Exact Inversion


Inverts the material around the starting note, eg. C, D, G, F would invert to produce C, Bb, F, G.


v	Scalic Inversion


Inverts the material without changing the scale, by swapping the highest and lowest pitches, then the second highest, and second lowest, etc. For example, C, D, G, F would invert to produce G, D, C, F.


{	Reverse


Reverses the sequence of pitches within a pattern, without changing its rhythm.


{	Expression


Alters the velocities of the notes within a pattern. There are five versions of this mutator:


v	Quieter


Reduces all the note velocities.


v	Louder


Increases all the note velocities.


v	Fade In


Gradually increases the note velocities during the pattern, so it starts softly and becomes louder.


v	Fade Out


Gradually decreases the note velocities during the pattern, so it starts loud and becomes quieter.


v	Clone Dynamics


Takes two patterns as input, and imposes the velocities from the second pattern onto the rhythm and pitches of the first.














�
Appendix B: example output


The accompanying tape contains four samples of output from the system, which were produced using the MS-DOS version of the program and a Yamaha TG500 sound module. Note that these are not polished, completed pieces. They were dumped directly from the synthesiser onto tape, whereas using the program in a real composition would be more likely to involve capturing its output and then selecting parts of it to use in combination with other material.





The first example is played on a vibraphone sample, and was produced by setting the density to 10 and the mutation rate to 32, and seeding the program with two rather uninspiring patterns:





[1998 modification: graphic removed to save space]





This provides a good demonstration of the feedback mechanism in use. Fairly early in the piece, the diminution mutator produced some patterns containing semiquaver movement, which I encouraged with a positive movement of the pitch bend wheel. Later on, however, I decided that the note lengths were becoming too short, and started moving the pitch bend to the extreme negative position whenever any fast material was played. The program responded by abandoning all the patterns which contained rapid sequences of notes, and so the last part of the piece is dominated by crotchets and minims.





The second example was produced from three seed patterns, which were played at different points rather than all together at the start as in the previous example. It uses a sforzando strings sample, which has a sharp attack followed by a crescendo recorded within the sample.





The opening material is based on the seed pattern:





[1998 modification: graphic removed to save space]





I gradually increased the density and mutation rate parameters, and then entered a second pattern, which produced a marked change of texture:





[1998 modification: graphic removed to save space]





Towards the end of the piece I reduced the density once more, and input a third pattern:





[1998 modification: graphic removed to save space]





This semiquaver material is never clearly heard, as it much have been immediately altered by the augmentation mutator or by combination with material derived from the previous patterns. The texture did alter in response to this input, but the dominant material was based on repeated quavers rather than the semiquavers that I played.





The third example was played on a piano sample, and uses a 5/8 rhythm which was produced by reducing the speed to 60 beats minute and setting the quantize ratio to 1/5. It is based on three seed patterns, which were all input together before I started recording the output: 





[1998 modification: graphic removed to save space]





In this piece I manually adjusted the mutator weightings to control the parameters within which the material could be altered. At the start, I set all the mutators which could introduce new pitches (such as exact transposition, inversion, and note displacement) to have zero probabilities, so the material was limited to the starting pitch-set B, C, C#, D, E, and F. As the piece progressed I gradually raised these weightings again, allowing new pitches to appear, and also increased the density of the output. Finally, I set all the probabilities to zero except for the 'copy mode' mutator, which forced the patterns back into a more limited range of pitches, eventually producing a repeated C#, at which point I stopped the program. The fact that it ended on a C# was entirely random: I repeated the same process a few moments after making the recording, and it produced an almost identical effect but ended on Ab.





The final piece demonstrates the simultaneous use of several MIDI channels, combining three different instruments: a tubular bell sample, a bamboo xylophone, and a synthesised string-like sound. It was produced from a range of different patterns which were input at various points, and contains many manual alterations of density and mutation rate as well as using the pitch bend feedback system. The opening was produced from several patterns consisting of sustained fifths and semitone clashes. I then introduced the tubular bell material, at first playing it live on the keyboard, and later recording some patterns which could be developed by the program. The middle of the piece combines the tubular bells with some more rhythmic material on the xylophone, consisting mainly of repeated quavers and alternating octaves. At the end of the piece I reduced the output density and added a low drone with the synthesised sound, which was played live on top of the bell and x
